Skip to main content

Advertisement

Log in

Design, synthesis, characterization and cytotoxic activity of new ortho-hydroxy and indole-chalcone derivatives against breast cancer cells (MCF-7)

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Twenty-seven new ortho-hydroxy chalcone and a series of indole-chalcone derivatives have been designed and synthesized. The structures of all newly-synthesized compounds were characterized by different spectroscopic techniques and the interactions with tubulin were evaluated for antiproliferative activities in vitro. The structure–activity relationships were elucidated for compounds with various substituents on the benzene ring of the aldehyde moiety at positions C-3, C-4 and C-5 with constant o-OH. The best inhibition results of ring bioisoterism for cancer cell growth were obtained for compounds 4c, 5j, and 6a with substituents m-tBu, Br and p-OCH3, respectively. Their antiproliferative activity was evaluated in MCF-7 cells, with compound 5j showing cytotoxicity activity comparable to that of reference compound paclitaxel. A computational study was carried out, for calculation of pharmacophore pattern, prediction of pharmacokinetic properties and toxicity. The results of the target compounds are followed by docking studies that have provided structural recommendations for designing new antiproliferative chalcones.

Highlights

  • A new series of ortho-hydroxy chalcones (4a–6j) and a series of indole chalcones (9a–d) were designed and synthesized.

  • 5-Nitrochalcone (7a–c) were readily reduced to amine to increase solubility in biological media.

  • A bioisosteric replacement was found to have enhanced in vitro inhibition potential.

  • The binding mode of Colchicine and the ortho-hydroxy chalcone derivatives to tubulin has been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Amos LA. Microtubule structure and its stabilisation. Org Biomolecular Chem. 2004;2:2153–60.

    Article  CAS  Google Scholar 

  2. Stanton RA, Gernert KM, Nettles JH, Aneja R. Drugs that target dynamic microtubules: a new molecular perspective. Medicinal Res Rev. 2011;31:443–81.

    Article  CAS  Google Scholar 

  3. Voitovich YV, Shegravina ES, Sitnikov NS, Faerman VI, Fokin VV, Schmalz HG, Combes S, Allegro D, Barbier P, Beletskaya IP, Svirshchevskaya EV. Synthesis and biological evaluation of furanoallocolchicinoids. J Med Chem. 2015;58:692–704.

    Article  CAS  PubMed  Google Scholar 

  4. Kavallaris M. Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer. 2010;10:194–204.

    Article  CAS  PubMed  Google Scholar 

  5. Seligmann J, Twelves C. Tubulin: an example of targeted chemotherapy. Futur Med Chem. 2013;5:339–52.

    Article  CAS  Google Scholar 

  6. McIntosh JR, Grishchuk EL, West RR. Chromosome-microtubule interactions during mitosis. Annu Rev Cell Dev Biol. 2002;18:193–219.

    Article  CAS  PubMed  Google Scholar 

  7. Romagnoli R, Baraldi PG, Salvador MK, Preti D, Aghazadeh Tabrizi M, Brancale A, Fu XH, Li J, Zhang SZ, Hamel E, Bortolozzi R. Discovery and optimization of a series of 2-aryl-4-amino-5-(3′, 4′, 5′-trimethoxybenzoyl) thiazoles as novel anticancer agents. J Med Chem 2012;55:5433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9:790–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yue QX, Liu X, Guo DA. Microtubule-binding natural products for cancer therapy. Planta Med. 2010;76:1037–43.

    Article  CAS  PubMed  Google Scholar 

  10. Kaur R, Kaur G, Gill RK, Soni R, Bariwal J. Recent developments in tubulin polymerization inhibitors: an overview. Eur J Med Chem. 2014;87:89–124.

    Article  CAS  PubMed  Google Scholar 

  11. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–65.

    Article  CAS  Google Scholar 

  12. Löwe J, Li H, Downing KH, Nogales E. Refined structure of αβ-tubulin at 3.5 Å resolution. J Mol Biol. 2001;313:1045–57.

    Article  PubMed  Google Scholar 

  13. Gigant B, Wang C, Ravelli RB, Roussi F, Steinmetz MO, Curmi PA, Sobel A, Knossow M. Structural basis for the regulation of tubulin by vinblastine. Nature. 2005;435:519–22.

    Article  CAS  PubMed  Google Scholar 

  14. Kavallaris M, Verrills NM, Hill BT. Anticancer therapy with novel tubulin-interacting drugs. Drug Resistance Updates. 2001;4:392–401.

    Article  CAS  PubMed  Google Scholar 

  15. Wang G, Li C, He L, Lei K, Wang F, Pu Y, Yang Z, Cao D, Ma L, Chen J, Sang Y. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg Med Chem. 2014;22:2060–79.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes JP, Rees S, Kalindjian SB, Philpott KL. Principles of early drug discovery. Br J Pharmacol. 2011;162:1239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patani GA, LaVoie EJ. Bioisosterism: a rational approach in drug design. Chem Rev. 1996;96:3147–76.

    Article  CAS  PubMed  Google Scholar 

  18. Meanwell NA. Synopsis of some recent tactical application of bioisosteres in drug design. J Med Chem. 2011;54:2529–91.

    Article  CAS  PubMed  Google Scholar 

  19. Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PV, Andrade CH, Neves BJ. Chalcone derivatives: promising starting points for drug design. Molecules. 2017;22:1210.

    Article  PubMed Central  Google Scholar 

  20. Zhou B, Xing C. Diverse molecular targets for chalcones with varied bioactivities. Med Chem. 2015;5:388.

    Google Scholar 

  21. Yan J, Chen J, Zhang S, Hu J, Huang L, Li X. Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J Med Chem. 2016;59:5264–83.

    Article  CAS  PubMed  Google Scholar 

  22. Burmaoglu S, Algul O, Anıl DA, Gobek A, Duran GG, Ersan RH, Duran N. Synthesis and anti-proliferative activity of fluoro-substituted chalcones. Bioorg Med Chem Lett. 2016;26:3172–6.

    Article  CAS  PubMed  Google Scholar 

  23. Hofmann E, Webster J, Do T, Kline R, Snider L, Hauser Q, Higginbottom G, Campbell A, Ma L, Paula S. Hydroxylated chalcones with dual properties: xanthine oxidase inhibitors and radical scavengers. Bioorg Med Chem. 2016;24:578–87.

    Article  CAS  PubMed  Google Scholar 

  24. Srinivasan B, Johnson TE, Lad R, Xing C. Structure− activity relationship studies of chalcone leading to 3-hydroxy-4, 3′, 4′, 5′-tetramethoxychalcone and its analogues as potent nuclear factor κB inhibitors and their anticancer activities. J Med Chem 2009;52:7228–35.

    Article  CAS  PubMed  Google Scholar 

  25. Bhagat S, Sharma R, Sawant DM, Sharma L, Chakraborti AK. LiOH· H2O as a novel dual activation catalyst for highly efficient and easy synthesis of 1, 3-diaryl-2-propenones by Claisen–Schmidt condensation under mild conditions. J Mol Catal A Chem. 2006;244:20–4.

    Article  CAS  Google Scholar 

  26. Ono M, Haratake M, Mori H, Nakayama M. Novel chalcones as probes for in vivo imaging of β-amyloid plaques in Alzheimer’s brains. Bioorg Med Chem. 2007;15:6802–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar D, Kumar NM, Akamatsu K, Kusaka E, Harada H, Ito T. Synthesis and biological evaluation of indolyl chalcones as antitumor agents. Bioorg Med Chem Lett. 2010;20:3916–9.

    Article  CAS  PubMed  Google Scholar 

  28. Da Violante G, Zerrouk N, Richard I, Provot G, Chaumeil JC, Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol Pharm Bull. 2002;25:1600–3.

    Article  PubMed  Google Scholar 

  29. Wang H, Wang Y, Chen ZY, Chan FL, Leung LK. Hydroxychalcones exhibit differential effects on XRE transactivation. Toxicology. 2005;207:303–13.

    Article  CAS  PubMed  Google Scholar 

  30. Karthikeyan C, Narayana Moorthy SH, Ramasamy N, Vanam S, Manivannan U, Karunagaran E, Trivedi D. P. Advances in chalcones with anticancer activities. Recent Pat anti-cancer drug Discov. 2015;10:97–115.

    Article  CAS  Google Scholar 

  31. Shin SY, Kim JH, Yoon H, Choi YK, Koh D, Lim Y, Lee YH. Novel antimitotic activity of 2-hydroxy-4-methoxy-2′, 3′-benzochalcone (HymnPro) through the inhibition of tubulin polymerization. J Agric Food Chem. 2013;61:12588–97.

    Article  CAS  PubMed  Google Scholar 

  32. Gomes MN, Muratov EN, Pereira M, Peixoto JC, Rosseto LP, Cravo PV, Andrade CH, Neves BJ. Chalcone derivatives: promising starting points for drug design. Molecules. 2017;22:1210.

    Article  PubMed Central  Google Scholar 

  33. Nielsen SF, Boesen T, Larsen M, Schønning K, Kromann H. Antibacterial chalcones–bioisosteric replacement of the 4′-hydroxy group. Bioorg Med Chem. 2004;12:3047–54.

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen TL, McGrath C, Hermone AR, Burnett JC, Zaharevitz DW, Day BW, Wipf P, Hamel E, Gussio R. A common pharmacophore for a diverse set of colchicine site inhibitors using a structure-based approach. J Med Chem. 2005;48:6107–16.

    Article  CAS  PubMed  Google Scholar 

  35. Rosen MD, Venkatesan H, Peltier HM, Bembenek SD, Kanelakis KC, Zhao LX, Leonard BE, Hocutt FM, Wu X, Palomino HL, Brondstetter TI. Benzimidazole-2-pyrazole HIF prolyl 4-hydroxylase inhibitors as oral erythropoietin secretagogues. ACS Med Chem Lett. 2010;1:526–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farce A, Loge C, Gallet S, Lebegue N, Carato P, Chavatte P, Berthelot P, Lesieur D. Docking study of ligands into the colchicine binding site of tubulin. J Enzym Inhibit Med Chem. 2004;19:541–7.

    Article  CAS  Google Scholar 

  37. Majcher U, Klejborowska G, Moshari M, Maj E, Wietrzyk J, Bartl F, Tuszynski JA, Huczyński A. Antiproliferative activity and molecular docking of novel double-modified colchicine derivatives. Cells 2018;7:192.

    Article  CAS  PubMed Central  Google Scholar 

  38. McLoughlin EC, O’Boyle NM. Colchicine-binding site inhibitors from chemistry to clinic: a review. Pharmaceuticals. 2020;13:8.

    Article  CAS  PubMed Central  Google Scholar 

  39. Yaeghoobi M, Frimayanti N, Chee CF, Ikram KK, Najjar BO, Zain SM, Abdullah Z, Wahab HA, Rahman NA. QSAR, in silico docking and in vitro evaluation of chalcone derivatives as potential inhibitors for H1N1 virus neuraminidase. Med Chem Res. 2016;25:2133–42.

    Article  CAS  Google Scholar 

  40. Morgan DM. Tetrazolium (MTT) assay for cellular viability and activity. In Polyamine protocols. Humana Press; 1998. pp. 179–184.

  41. Wang T, Li Z, Cvijic ME, Krause C, Zhang L, Sum CS. Measurement of β-arrestin recruitment for GPCR targets. Assay Guidance Manual, Bethesda (MD). Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.

  42. Muškinja JM, Burmudžija AZ, Baskić DD, Popović SL, Todorović DV, Zarić MM, Ratković ZR. Synthesis and anticancer activity of chalcone analogues with sulfonyl groups. Med Chem Res. 2019;28:279–91.

    Article  Google Scholar 

  43. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Cryst. 2015;71:3–8.

    Google Scholar 

  44. Spek AL. Structure validation in chemical crystallography. Acta Cryst. 2009;65:148–55.

    CAS  Google Scholar 

Download references

Acknowledgements

Funding

The authors would like to thank the Malaysian Government for the Fundamental Research Grant Scheme (FRGS) with project code FRGS/1/2019/STG01/USM/02/16 which was used to finance this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melati Khairuddean.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jumaah, M., Khairuddean, M., Owaid, S.J. et al. Design, synthesis, characterization and cytotoxic activity of new ortho-hydroxy and indole-chalcone derivatives against breast cancer cells (MCF-7). Med Chem Res 31, 517–532 (2022). https://doi.org/10.1007/s00044-021-02834-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02834-2

Keywords

Navigation